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We develop a spectral formulation and a stationary WKB approximation for calculating the probabilities of
rare events �large deviations from the mean� in systems of reacting particles with infinite-range interaction,
describable by a master equation. We compare the stationary WKB approximation to a recent time-dependent
semiclassical approximation developed, for the same class of problems, by Elgart and Kamenev �Phys. Rev. E
70, 41106 �2004��. As a benchmark we use an exactly solvable problem of the binary annihilation reaction
2A→0” .
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I. INTRODUCTION

Since the pioneering works of Delbrück �1�, Bartholomay
�2� and McQuarrie et al. �3,4�, kinetics of reacting systems
with infinite-range interaction, containing a large but finite
number of molecules or agents �such as bacteria, cells, ani-
mals, or even humans� have attracted much attention �5,6�.
Although the change in time of the average number of par-
ticles in such systems may be describable by �continuum�
rate equations, one often needs to know the probability of a
nontypical behavior. This necessitates going beyond the rate
equations, and a standard way of achieving this goal is pro-
vided by the master equation of a gain-loss type, which di-
rectly deals with Pn1,n2,. . .,nN

�t�: the probability of simulta-
neously having n1 particles of the first type, n2 particles of
the second type,. . ., and nN particles of the Nth type at time t
�5,6�. Though providing a complete description, the master
equation is rarely solvable analytically; thus, various ap-
proximations are in use �5,6�. Probably the most widely used
approximation is the Fokker-Planck equation, which usually
suffices when one is not interested in extreme statistics, such
as extinction time �7,8�. Being interested in extreme statis-
tics, we will exploit here a well-known mathematical formu-
lation �see, e.g., �5�� that, though exactly equivalent to the
master equation, deals instead with a generating function
G�x , t� that encodes all the probabilities Pn1,n2,. . .,nN

�t�. The
generating function is defined in the following way:

G�x,t� = �
n1=0,...,nN=0

� ��
i=1

N

xi
ni�Pn1,n2,. . .,nN

�t� , �1�

whereas the probabilities Pn1,n2,. . .,nN
�t� are recovered by dif-

ferentiation

	Pn1,. . .,nN
�t� =

1

�
i=1

N

ni!

�ni+. . .+nNG�x,t�
�x1

n1 . . . �xN
nN 	

x=0

. �2�

This formulation transforms the master equation �an infinite
set of differential difference equations� into a single linear
partial differential equation for G�x , t�

�G�x,t�
�t

= L̂G�x,t� , �3�

where L̂ is a real linear differential operator that involves
derivatives with respect to the auxiliary variables
x= �x1 ,x2 , . . . ,xN�. The initial condition for this equation is
supplied by Eq. �1� with the time-dependent probabilities
replaced by their �prescribed� values at t=0. When the rate

constants are time independent, the operator L̂ is independent
of time. There is one universal boundary condition in this
formulation. Indeed, as

�
n1=0,...,nN=0

�

Pn1,n2,. . .,nN
�t� = 1, �4�

one immediately gets

G�x1 = 1, . . . ,xN = 1;t� = 1. �5�

Correspondingly, L̂G�x , t� must vanish at x= �x1 ,x2 , . . . ,xN�
= �1,1 , . . . ,1�.

This paper will be limited to a single species, N=1. In this
case, the generating function G�x , t� is

G�x,t� = �
n=0

�

xnPn�t� , �6�

the probabilities Pn�t� are


Pn�t� =
1

n!

�nG�x,t�
�xn 


x=0
, �7�

the evolution equation for G is

�G�x,t�
�t

= L̂G�x,t� , �8�

and the universal boundary condition �5� is

G�x = 1,t� = 1. �9�

The initial condition is

G�x,0� � G0�x� = �
n=0

�

xnPn�0� . �10�

We will be interested in the important class of problems
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where the operator L̂ is of the second order �9�. The crux of
our approach is that, for any time-independent second-order
linear differential operator L̂, one can expand G�x , t� in a
complete set of properly constructed orthogonal spatial
eigenfunctions of the operator L̂ �10,11�. The linear ordinary
differential equation for these eigenfunctions can be ob-
tained, for any specific problem, by separation of variables.
By a proper change of variables one can always eliminate the
first derivative from this equation and arrive at a spectral
problem for a stationary Schrödinger equation for a zero-
energy particle in a potential V�x ,��, which depends on a
parameter � coming from the separation of variables. This
parameter, unknown a priori, represents the eigenvalue of
this problem. This spectral formulation is exact, and it paves
the way to a systematic computation of the probabilities
Pn�t�, where n can be significantly different from the “typi-
cal,” or average number of particles. Using the probabilities,
one can accurately estimate a host of quantities of interest,
for example, the average extinction time and the lifetime
distribution. The present work is mainly concerned with one
useful technique within the framework of the spectral formu-
lation: the WKB approximation �12,13�, which yields semi-
classical eigenvalues and eigenfunctions. Using these, one
can construct an approximate solution of the initial value
problem for G�x , t� and, by virtue of Eq. �7�, calculate Pn�t�
for n�1.

As Eq. �3� is readily interpretable as a �non-Hermitian�
time-dependent Schrödinger equation with imaginary time,
there were earlier quantum-mechanical interpretations of
rare-event statistics in reacting systems, such as the Doi-
Peliti formalism of second quantization �14–16�. Still an-
other approach to this class of problems has been recently
suggested by Elgart and Kamenev �7�. Instead of dealing
with the creation and annihilation operators, as is customary
in the second quantization approach, Elgart and Kamenev
reformulated the time-dependent problem in semiclassical
terms, employing two strong inequalities: n�1 and n̄�t��1,
where n̄�t� is the average number of particles in the system at
time t. They showed that classical dynamics corresponding
to the Hamiltonian of the problem provides valuable infor-
mation about the rare-event statistics and that this approach
is greatly superior to the more customary Fokker-Planck de-
scription. Elgart and Kamenev �7� start with the ansatz
G�x , t�=exp�−S�x , t�� in Eq. �8�. Then, neglecting the �xxS
term, they arrive at a Hamilton-Jacobi equation for S�x , t�,
which, for a time-independent L̂, is solvable �17�. This pro-
cedure yields G�x , t� and, by virtue of Eq. �7�, the probabili-
ties Pn�t�. Elgart and Kamenev �7� illustrated this approach
on several pedagogical examples, which included various
combinations of binary annihilation, branching, decay, and
creation of particles.

As explained above, we suggest in this work a different
type of semiclassical approximation for this non-Hermitian
quantum mechanics: a stationary WKB approximation based
on an exact spectral formulation. We will show that the two
semiclassical approximations complement each other, each
of them being advantageous in some region of the parameter
space. We will demonstrate our approach by a simple

example of binary annihilation reaction 2A→
�

0” , where
��0 is the rate constant. In this case, the master equation is

d

dt
Pn�t� =

�

2
��n + 2��n + 1�Pn+2�t� − n�n − 1�Pn�t�� ,

�11�

while the evolution equation for G�x , t� takes the form

�G

�t
=

�

2
�1 − x2�

�2G

�x2 . �12�

This example is instructive for two reasons. First, it is one of
the examples used by Elgart and Kamenev �7� to illustrate
their time-dependent semiclassical approach. Second, and no
less important, it is exactly solvable. McQuarrie et al. �4�
used the exact solution to find the average number of par-
ticles and the variance vs time, when starting from a fixed
even number of particles. We significantly extend the analyti-
cal solution in Appendix and find the probabilities Pn�t� for
all n and t, and their various asymptotics. Using these find-
ings, we also calculate the probability distribution of life-
times of the particles in this system and the average extinc-
tion time. These exact results provide a benchmark for our
WKB theory. In principle, the strong inequality n�1 is the
only criterion required in this theory for all times. We ob-
served, however, that in practice one also needs to require
n� n̄, in order to avoid loss of accuracy resulting from
summation of many large terms of alternating sign. We
will show that, in the region of n� n̄, the stationary
WKB formalism is much more accurate than the time-
dependent formalism due to Elgart and Kamenev, whereas in
the region of n� n̄ the time-dependent formalism �which cir-
cumvents the summation of large terms of alternating sign� is
advantageous.

Here is an overview of the rest of the paper. In Sec. II, we
apply separation of variables to Eq. �12�, arrive at a Sturm-
Liouville eigenvalue problem and find approximate solutions
to this problem by using the WKB approximation. Then we
solve, in Sec. III, an initial value problem, compute the re-
spective approximate probabilities Pn�t�, and compare them
to the exact probabilities and their asymptotics, derived in
Appendix . In Sec. IV, we compare the predictions of the
time-dependent semiclassical formulation �7� to the exact re-
sults and establish the validity of the time-dependent and
stationary semiclassical approximations. Section V presents
a brief summary and discussion of our results.

II. SPECTRAL FORMULATION
AND WKB APPROXIMATION

A. Boundary conditions and steady-state solution

To complete the formulation of the problem for Eq. �12�,
we need two boundary conditions. The first of them, Eq. �9�,
is universal. The second one, at x=−1, readily follows from
Eq. �12� itself: G�x=−1, t�=C=const, where C=G0�x=−1�
is determined by the initial data �10� �18�.

The limit of t→� corresponds to a steady-state solution
of Eq. �12�: Gs�x�=A+Bx. To obey the boundary conditions
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at x= ±1, we choose A= �1+C� /2 and B= �1−C� /2. When
C=1 �an even number of particles at t=0�, the steady-state
solution Gs�x�=1 corresponds to an empty system: Pn=	n0,
where 	ij is the Kroenecker delta. When C=−1 �an odd num-
ber of particles at t=0�, one obtains Gs�x�=x. This corre-
sponds to a single particle, Pn=	n1, which lives forever as
there are no particles it can react with.

B. Separation of variables and eigenvalue problem

Now let us consider the time-dependent part of the gen-
erating function: g�x , t�=G�x , t�−Gs�x�. As g�x , t� must van-
ish at x= ±1, we can look for solutions of the equation for
g�x , t�,

�g

�t
=

�

2
�1 − x2�

�2g

�x2 , �13�

in the separable form g�x , t�=exp�−
t���x�. We obtain

���x� +
�2��x�
1 − x2 = 0, �14�

where �2=2
 /�, and ��±1�=0. Equation �14� can be inter-
preted as a stationary Schrödinger equation for a zero-energy
particle �m= � =1� in the singular potential

V�x� = �−
�2

2�1 − x2�
, x  1,

+ � , x � 1;

�15�

see Fig. 1, with �a priori unknown� magnitude �2, which
plays the role of eigenvalue. The problem is exactly solvable
in terms of Legendre polynomials, and the solution is pre-
sented in the Appendix. In Sec. II C, we will proceed as if we
were unaware of the exact solution and find the spectrum of
� and the eigenfunctions in the WKB approximation.

C. Stationary WKB approximation:
Wave functions and quantization

The crucial assumption of our semiclassical theory is that
the main contribution to the probabilities Pn�t� with n�1

comes from the semiclassical region of spectrum of �, where
��1 and the eigenfunctions have multiple zeros on the in-
terval x  1. We will verify this assumption a posteriori.
Employing the strong inequality ��1, we find by a standard
calculation �12,13� two independent �even and odd� WKB
solutions of Eq. �14�

�even�x� � �1 − x2�1/4 cos�� arcsinx� , �16�

�odd�x� � �1 − x2�1/4 sin�� arcsinx� . �17�

To quantize the eigenvalue �, we must use the boundary
conditions at x= ±1. The WKB solutions �16� and �17� are
invalid, however, at and near the singular points x= ±1. To
determine the solutions there, we first solve Eq. �14� in a
small vicinity of each of these points. Here it suffices to
consider the point x=1. Let us introduce a new coordinate
�=1−x�1 and neglect the subleading terms in the expan-
sion of the potential V�x� near x=1. Equation �14� becomes

2������ + �2���� = 0. �18�

The two independent solutions are

FIG. 2. �Color online� The normalized WKB eigenfunctions
�27� �the red dashed lines� and the normalized exact eigenfunctions
�the blue solid lines� for k=10 �a� and k=2 �b�. As one can see, a
good agreement is observed even for k=2, while for k=10 the
agreement is excellent. The inset in �b� shows a close vicinity of
x=1. One can see that the function u20

�a��x� �the red dashed line�
deviates from the exact solution �indicated by the asterisks� in the
vicinity of x=1, whereas the function u20

�b��x� �the solid line� is in
excellent agreement with the exact solution there.

FIG. 1. �Color online� Shown by the blue solid lines is the
singular potential V�x�, given by Eq. �15�. The vertical scale is
arbitrary.
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�1��� = �1/2J1���2��1/2� �19�

and

�2��� = �1/2Y1���2��1/2� , �20�

where J1 and Y1 are the Bessel functions of the first and
second kind, respectively. Only �1��� obeys the required
boundary condition ���=0�=0, so �2��� must be discarded.
Now we can match �1��� with each of the WKB solutions
�16� and �17�. Indeed, when ��1, the solution �1��� re-
mains valid at ��1/2�1, as long as ��1. It has, therefore, a
common region of validity with the WKB solutions. We use
the asymptotic expansion �19�

J1�z� �� 2

�z
cos�3�

4
− z� at z � 1 �21�

and obtain, up to a constant factor,

�1��� � �1/4 sin���2� −
�

4
�

= �1 − x�1/4 sin���2�1 − x� −
�

4
� . �22�

Now we expand the even WKB solution �16� at 1−x�1

�even�x� � �1 − x�1/4 sin���2�1 − x� −
��

2
−

�

2
� . �23�

Matching the asymptotes �22� and �23�, we obtain the
discrete spectrum eigenvalues corresponding to the even
eigenfunctions

� = 2k − 1
2 , �24�

where k�1 is an integer. In a similar way, we obtain the
discrete spectrum for the odd eigenfunctions

� = 2k + 1
2 . �25�

The eigenvalues �24� and �25� coincide, in the leading and
subleading orders in k�1, with the exact eigenvalues �4k2

−2k�1/2 and �4k2+2k�1/2, respectively �see the Appendix�.
Furthermore, the corresponding WKB eigenfunctions pro-
vide an accurate approximation �see Fig. 2� to the exact
eigenfunctions �which are orthogonal, with respect to the in-
ner product with the weight function w�x�= �1−x2�−1, on the
interval x  1, and form a complete set�. We normalize the
approximate eigenfunctions ul�x� by demanding

�
−1

1

ul
2�x�w�x�dx = 1. �26�

The normalized even WKB eigenfunctions are

u2k�x� = �u2k
�a��x� = �− 1�k� 2

�
�1 − x2�1/4cos��karcsinx� for 0 � x  1 − � ,

u2k
�b��x� = − �2�k�1 − x�J1��k

�2�1 − x�� for 1 − �  x � 1,

�27�

where 1/k2���1, �k=2k−1/2, and k�1. For 1/�k
2�1

− x  �1, the function u2k
�a��x� coincides, in the leading order,

with u2k
�b��x�. It is sufficient to use only the u2k

a �x� asymptotes
in the normalization integral �26�.

III. INITIAL VALUE PROBLEM AND CALCULATION
OF THE PROBABILITIES

Putting everything together, we can write the WKB solu-
tion of the initial value problem for Eq. �12� as

G�x,t� � Gs�x� + �
l�0

al exp�−
�l

2�t

2
�ul�x� , �28�

where each constant al is equal to the inner product �with the
weight function w�x�= �1−x2�−1� of the respective normal-
ized eigenfunction ul�x� and the function G0�x�−Gs�x�.
One can see that the populations of the eigenstates with
l�0 of this non-Hermitian “quantum mechanics” are
decaying exponentially in time.

Assume, for concreteness, that the initial number of
particles is fixed and equal to n0=2k0�1, where k0 is

integer. In this case �see Eq. �10�� G0�x�=x2k0, and one only
needs the even eigenfunctions �27�. Now we can use the
orthonormality relation �26� and compute the coefficients ak.
After a lengthy algebra, we obtain

ak �
2

��k

e−�k�2k−1�/2k0�, �29�

where we have assumed k��k0�k0, as justified below. In
the leading order in 1/k�1, Eq. �29� coincides with the
corresponding asymptotics �A4� of the exact result. Now Eq.
�28� becomes

G�x,t� � 1 + �
k=1

�
2

��k

e−k�2k−1�/N̄�t�u2k�x� , �30�

where

N̄�t� �
2k0

1 + 2k0�t

is the average number of particles at time t according to the
mean-field theory. Though the sum in Eq. �30� formally runs
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to infinity, the dominant contribution comes from terms with
k��k0�k0, while the rest of terms give only exponentially
small corrections.

To recover Pn�t�, for 1�n��k0, we use Eq. �7�:

Pn�t� �
1

n!�k=1

�
2

��k


e−k�2k−1�/N̄�t��
nu2k�x�
�xn 


x=0
. �31�

As our WKB approximation assumes �k=2k−1/2�1, the
first few terms of the sum in Eq. �31� may seem inaccurate. It
turns out, however, that the sum actually starts from k=n /2,
see below. Therefore, at 1�n��k0 all the terms of the sum
in Eq. �31� are accurate.

Equation �31� is the central result of the stationary WKB
approximation for the binary annihilation problem. To com-
pute the nth derivative of the WKB eigenfunctions u2k�x�,
entering Eq. �31�, we can analytically continue u2k�x� into
the complex plane. By virtue of the Cauchy theorem,

I �
1

n!

 �nu2k�x�

�xn 

x=0

=
1

2�i
�

C

u2k�z�dz

zn+1 , �32�

where the integration is performed over a closed contour C
in the complex z plane around the pole x=0 inside the region
of analyticity of u2k�x�. We can put here u2k�z�=u2k

�a��z�, since
the main contribution to the integral, as shown below, comes
from the region far from the points x= ±1, in the vicinity of
which u2k

�a��z� is inaccurate, see Eq. �27�. We obtain

I =
�− 1�k

�2�3/2i
Im��

C

g�z�e�n−1�f�z�dz� , �33�

where f�z�= iA arcsin�z�−ln�z�, g�z�=
�1−z2�1/4

z2 and
A=�k / �n−1�. As n�1, the integral in �33� can be evaluated
using the saddle-point approximation �13�. This is done by
deforming the contour C, so that it passes through the saddle
point z*=x*+ iy*, where u�x ,y�=Re�f�z�� obtains its maxi-
mum, and consequently, v�x ,y�=Im�f�z�� is constant. By
choosing the contour at the saddle point to be parallel to the
direction of the steepest descent of u�x ,y�, we can replace
the integration over the complex plane by integration over
the real axis, having to multiply the result by a constant
phase: the value of v�x ,y� at the saddle point. The saddle
point can be found from the equation f��z�=0. For kn /2
�that is, A1�, the saddle point lies on the real axis:
z*

�1�= �1−A2�−1/2,whereas for k�n /2 �that is, A�1� it lies on
the imaginary axis: z*

�2�=−i�A2−1�−1/2. In each of these cases,
Eq. �33� becomes �13�

I =
�− 1�k

�2�3/2i
Im��2�g�z*�e�n−1�f�z*�ei�

��n − 1�f��z*�
� , �34�

where � is the angle of the contour with respect to the posi-
tive real axis at the saddle point, where the contour is chosen
to be parallel to −�u�x ,y�.

This procedure yields markedly different results in the
cases of A1 �kn /2� and A�1 �k�n /2�. For A1, upon
substituting z*

�1� and deforming the contour so that �=� /2 in
its vicinity, we realize that the result inside the brackets in

Eq. �34� is real which yields I=0. Therefore, the saddle-point
asymptote �34� predicts that the nth derivative of the eigen-
functions u2k�x� vanishes for kn /2, so the sum in
Eq. �31� starts from k=n /2. This could be expected, as the
same kind of behavior is exhibited by the exact eigenfunc-
tions q2k�x�, which are polynomials of order 2k �see the
Appendix�.

After some algebra, Eq. �34� yields, for k�n /2

I �
�− 1�k−n/2e1/4k3/22n�k +

n

2
�k+n/2−1

�nn+1/2�k −
n

2
+

1

4
�k−n/2+1/2 , �35�

where we have substituted z*
�2� for the saddle point. A pos-

sible contour C is shown in Fig. 3. We can see now that, as
the saddle point z* lies on the imaginary axis, the contour
does not have to come close to x= ±1, thus justifying the use
of u2k

�a��z� for u2k�z�. The saddle point approximation is only
valid when f��z*�  / f��z*�3/2��n �13�. For k�n /2, this re-
quirement is equivalent to k−n /2�1. We will see shortly,
however, that the results remain quite accurate even for
k−n /2=O�1�. Now we can rewrite Eq. �31� as

Pn�t� �
e1/42n+1/2

�nn+1/2 �
k=n/2

� �− 1�k−n/2k�k +
n

2
�k+n/2−1

�k −
n

2
+

1

4
�k−n/2+1/2

�e−k�2k−1�/N̄�t�. �36�

We immediately note that this formula is very similar to Eq.
�A13�. Moreover, the two expressions coincide if we rewrite
the factor �k−n /2�k−n/2+1/2 in the denominator of Eq. �A13�
as �k−n /2+1/4−1/4�k−n/2+1/2, assume k−n /2�1 and use
the asymptote �1+� /u�u�e� at u�1. As Eq. �A13� gives an

accurate approximation to the exact probabilities at n� N̄
�see Appendix�, the same is true for the stationary WKB

result �A13�. For n� N̄ it suffices to take into account only

FIG. 3. A possible contour C, see Eq. �33�. The direction of the
contour in the vicinity of the saddle point z=z*

�2� �marked by the
circle� is chosen to be along −�u�x ,y� at z*

�2�, implying in this case
�=0. As n�1, the contribution of the rest of the contour �as long as
it encircles z=0� is exponentially small.
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the first term, k=n /2 in the sum of Eq. �36�, which yields

Pn�t� �
2n+1/2e1/4

��n
e−n�n−1�/2N̄�t�. �37�

This asymptote coincides, up to a factor �2/�e1/4�0.976,
with Eq. �A12� that gives an accurate approximation to the
exact probabilities in this limit �see the Appendix�. There-

fore, in the region of n� N̄ the stationary WKB theory is
accurate, as can be seen from Figs. 4–6. Importantly, the

asymptote �37� does not demand N̄�1 and, therefore, re-

mains valid at long times, �t�1, when the average number
of particles is already small; see Fig. 7.

IV. TIME-DEPENDENT SEMICLASSICAL SOLUTION
VS EXACT SOLUTION

The time-dependent semiclassical approximation, sug-
gested by Elgart and Kamenev �7�, differs from the station-
ary WKB approximation in that it deals semiclassically with
the original non-Hermitian Schrödinger equation �8� �a par-
tial differential equation�, rather than with the set of ordinary
differential equations obtained by the separation of variables
in Eq. �8�. Using the ansatz G�x , t�=exp�−S�x , t�� and ne-
glecting the �xxS term, one arrives at a Hamilton-Jacobi
equation. For the binary annihilation problem, this equation
is �7�

�S

�t
=

�

2
�x2 − 1�� �S

�x
�2

. �38�

Elgart and Kamenev �7� found an exact solution to this
equation

FIG. 4. �Color online� The decimal logarithm of Pn�t� as a func-

tion of n / N̄ for �t=0.02 and n0=103. Shown are the exact prob-
abilities �A8� �the solid line�, the stationary WKB probabilities �31�
�the empty circles� and the time-dependent WKB probabilities �41�
�the blue squares�. Inset shows the logarithm of the ratio of the
stationary WKB probabilities and the exact ones �the red solid line�,
and the logarithm of the ratio of the time-dependent WKB prob-

abilities and the exact ones �the blue dashed line�, vs n / N̄. As n / N̄
grows, the time-dependent WKB solution deteriorates, whereas

when n goes down below N̄, the stationary WKB solution
deteriorates.

FIG. 5. �Color online� Same as in Fig. 4, but for �t=0.1.

FIG. 6. �Color online� Same as in Fig. 4, but for �t=0.5. One
can clearly see that the time-dependent WKB result is already in-

accurate at n� N̄, while the stationary WKB result keeps its high
accuracy there.

FIG. 7. �Color online� Long time asymptotics of Pn�t�. Shown is
the decimal logarithm of Pn�t� as a function of �t for n0=103 and
n=2, 4, and 6. The circles denote the stationary WKB solution �Eq.
�37��, the solid lines denote the exact solution �Eq. �A8��. Notice
excellent agreement even for small n.
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S�x,t� = 1
2 N̄�t� arccos2x .

The respective generating function

G�x,t� = exp�−
1

2
N̄�t� arccos2x� �39�

obeys the boundary condition �9� exactly, and the initial
condition G�x , t=0�=xn0 with a high accuracy as long as
n0�1. The probabilities Pn�t� can be calculated from the
equation


Pn�t� =
1

n!

�nG�x,t�
�xn 


x=0
=

1

2�i
� dz

z1+nG�z,t� , �40�

where the integration is performed over a closed contour,
including z=0 in the complex z plane, inside the region of

analyticity of G�z , t�. For n�1 and N̄�t��1, the integral can
be evaluated by the saddle-point approximation, and the
result is

Pn�t� �� 1 − xs
2

2��n − N̄�t�xs
2�

e−N̄�t��1/2arccos2xs+�n/N̄�t��ln xs�,

�41�

where xs=xs�n / N̄� is the root of the saddle-point equation

xs�1−xs
2�−1/2 arccosxs=n / N̄ �7�. For n� N̄�t�, one obtains

xs�2n / ��N̄�, so

ln Pn�t� � n ln
�N̄�t�

2n
−

�2N̄�t�
8

+ n �42�

�in the corresponding asymptote of Ref. �7� the term n is
missing�.

For n� N̄�t�, xs�1− �3/2��1−n / N̄�, so

ln Pn�t� � −
3�n − N̄�t��2

4N̄�t�
. �43�

Finally, for n� N̄�t�, xs��1/2�en/N̄, so

ln Pn�t� � n ln 2 −
n2

2N̄�t�
. �44�

What are the applicability conditions of the time-
dependent semiclassical approximation? The above calcula-

tions required n0=2k0�1, n�1, and N̄�1. To find out
whether there is an additional condition, let us consider the

n� N̄�t� asymptote of the exact result �Eq. �A12��

ln Pn�t� � n ln 2 −
n2

2N̄�t�
+

n

2N̄�t�
. �45�

A comparison of Eqs. �44� and �45� shows that the time-
dependent WKB probability Pn�t� lacks a large term

n / �2N̄�t�� in the exponent, and therefore, it greatly underes-

timates rare events with n� N̄�t�. This effect can been seen

in Figs. 4–6. On the other hand, in the region n� N̄�t�, the

time-dependent WKB theory yields a good approximation to
the exact result, as it circumvents the summation of large
terms of alternating sign.

Therefore, based on the analytical and numerical compari-
sons, we conclude that the time-dependent semiclassical ap-

proximation is accurate at 1�n� N̄. This obviously implies

N̄�1, that is not too long times: �t�1. The stationary WKB

approximation is accurate for n� N̄ for any N̄, that is for
all times. These results are illustrated in Figs. 4–6, which

show Pn�t� vs n / N̄: the exact result �A8� and the predictions
of each of the two approximations, Eqs. �31� and �41�.
The validity domains of each of the two semiclassical

approximations in the parameter plane �N̄ ,n� are shown in
Fig. 8.

V. SUMMARY AND DISCUSSION

We developed a spectral formulation and a stationary
WKB approximation for calculating the probabilities of rare
events in systems of reacting particles with infinite-range in-
teraction, which are describable by a master equation. We
extended the exact analytical solution of the binary annihila-
tion problem 2A→0” and used is as a benchmark for testing
the stationary WKB approximation and a recent time-
dependent WKB approximation due to Elgart and Kamenev
�7�. In theory, the stationary WKB approximation is always
more accurate than a time-dependent WKB approximation.
In practice, this advantage is indeed realized in the regimes
where the superposition of the different quantum states of the
system is dominated by a small number of terms. On the
contrary, when many quantum states are involved, virtually
any approximation to the “wave functions” of individual
states may alter the precise destructive interference between
the different states and cause large errors. In such cases, the
time-dependent WKB approximation �7�, which effectively
sums over the quantum states without dealing with them
explicitly, can be advantageous.

WKB approximation alone is insufficient for calculating
the lifetime probability distribution of systems which exhibit

FIG. 8. �Color online� The dashed regions schematically show
the validity of each of the two semiclassical theories on the param-

eter plane �N̄ ,n�. �a� shows the validity domain n� N̄ and n�1
of the stationary WKB theory. An additional condition for its valid-
ity is n��k0�k0 �not shown�. �b� shows the validity domain

1�n� N̄ of the time-dependent WKB theory.
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extinction. This quantity is encoded in P0�t��G�x=0, t�,
which involves a sum over all quantum states, including the
lowest ones �see the final part of the Appendix�. Still, the
spectral formulation can be very useful here: it clearly iden-
tifies the lowest states and provides a proper framework
for calculating their eigenvalues and eigenfunctions, for
example, by a variational method.

This work dealt with the case when the operator L̂ is of
the second order, and the standard machinery of Sturm-
Liouville theory is therefore available. The spectral formula-
tion itself, however, is equally applicable to higher-order
operators. Furthermore, it is well known that “WKB analysis
is not sensitive to the order of a differential equation” �Ref.
�13�, p. 496�, which paves the way to generalizations of the
theory to more complicated reaction kinetics.

Finally, we have restricted ourselves in this paper to a
single species. The generating function formalism, however,
is applicable to any number of species �see Eqs. �1�–�5��.
Already for two species some qualitative changes are pos-
sible. Indeed, for two species, the underlying classical phase
space, described by the Hamiltonian of the problem, is four-
dimensional. If energy is the only integral of motion, the
classical motion is nonseparable and, in general, chaotic
�20�. Therefore, for highly excited states, where classical
mechanics and stationary WKB approximation are relevant,
the spectral formulation may bring about an extension of
quantum chaos to these non-Hermitian “quantum” systems.
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APPENDIX

Here we briefly review and extend the exact solution
of the binary annihilation problem, obtained by McQuarrie
et al. �4�. Let the initial state correspond to a fixed and
even number of particles, so one only needs the even
eigenfunctions of Eq. �14�, with the boundary conditions
��x= ±1�=0. The exact even eigenfunctions are �21�

�2k�x� = P2k�x� − P2k−2�x�, k = 1,2, . . . ,

where Pl�x� is the Legendre polynomial of order l. The
corresponding exact eigenvalues are �= �4k2−2k�1/2. The
normalized even eigenfunctions �see Eq. �26�� are

q2k�x� =�k�2k − 1�
4k − 1

�P2k�x� − P2k−2�x�� .

The exact solution of an initial value problem for G�x , t� can
be written as

G�x,t� = 1 + �
k=1

�

Akq2k�x�e−k�2k−1��t, �A1�

where the coefficients Ak are determined by the initial data
G0�x�. For the initial data we are interested in n0=2k0, where

k0=0 ,1 ,2 , . . ., therefore, G0�x�=x2k0. Using the
orthogonality relations of the Legendre polynomials, we
obtain, after some algebra,

Ak =� 4k − 1

k�2k − 1�

��1 + k0���1

2
+ k0�

��1

2
+ k0 + k���k0 − k + 1�

, �A2�

where ��· · · � is the gamma function. Owing to the presence
of factor ��k0−k+1� in the denominator, Ak vanishes for
k�k0. Therefore, the sum in Eq. �A1� is finite in this case,
and it ends at k=k0. The average number of particles at time
t, n̄�t�, can be found from the following relation:

n̄�t� = �
n=0

�

nPn�t� =
 �G�x,t�
�x



x=1

.

Using Eq. �A1�, we obtain

n̄�t� = �
k=1

k0

�k�2k − 1��4k − 1�Ak

�e−k�2k−1��t. �A3�

Equations �A1�–�A3� coincide, up to notation, with the re-
sults of McQuarrie et al. �4� �they also calculated the second

moment n2̄�t��. We now extend the exact theory in three di-
rections. First, we obtain some useful approximations for a
large number of particles. Second, we calculate the probabili-
ties Pn�t� and their approximate asymptotics in different re-
gimes. We use these approximations while comparing the
exact solution �i� with our stationary WKB results and �ii�
with the time-dependent semiclassical approximation of El-
gart and Kamenev �7�. Third, we find the probability distri-
bution of lifetimes of the particles in this system, and the
average extinction time.

When k��k0 �see below�, we can reduce Eq. �A2� to

Ak �� 4k − 1

k�2k − 1�
e−�k/2k0��2k−1� �A4�

which yields the following approximation for G�x , t�:

G�x,t� � 1 + �
k=1

k0 � 4k − 1

k�2k − 1�
q2k�x�e−�k�2k−1�/N̄�t��. �A5�

Here

N̄�t� �
2k0

1 + 2k0�t
,

which is the mean-field result for the average number of
particles. Equation �A5� is valid for all times, as the domi-
nant contribution to the sum comes from terms with
k��k0�k0, while the rest of terms give only exponentially
small corrections. The average number of particles �A3� can
be approximated as
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n̄�t� � �
k=1

k0

�4k − 1�e−�k�2k−1�/N̄�t��. �A6�

For short times, �t�1, N̄�t��1, so the summation in Eq.
�A6� can be replaced by integration. Moving the upper limit
to infinity �which only causes an exponentially small error�,
we obtain

n̄�t� � �
1

�

�4k − 1�e−�k�2k−1�/N̄�t��dk � N̄�t� , �A7�

the mean-field result. In the long-time limit �t�1,

N̄�t����t�−1�1, the term k=1 in Eq. �A6� is dominant, and
we obtain n̄�t��3e−�t.

Now we employ Eq. �7� of the main part of the paper to
calculate the probabilities Pn�t�. After some algebra, we
obtain the exact result

Pn�t� = 	0n +
2n−1

n! �
k=r

k0

Ce�k,n�e−k�2k−1��t, �A8�

where n is assumed to be even, r=max�1,n /2�, and

Ce�k,n� = Ak� �− 1�k−�n/2��4k − 1���k −
1

2
+

n

2
�

���k −
n

2
�! � .

�A9�

At n�0 the sum in Eq. �A8� starts from k=n /2. This is
because the eigenfunctions q2k�x� are polynomials of order
2k, so the nth derivative of q2k�x� vanishes at n�2k.

Going to the limit of n�1 and k��k0, and using the
approximation �A4� for Ak, we can rewrite Ce�k ,n� as

Ce�k,n� �
�− 1�k−n/225/2k�k + n/2�k+n/2−1

�k −
n

2
�! ek+n/2

e−k�2k−1�/�2k0�.

�A10�

Therefore, at 1�n��k0, Pn�t� becomes

Pn�t� �
2n+1

nn+1/2 �
k=n/2

k0 �− 1�k−n/2k�k +
n

2
�k+n/2−1

���k −
n

2
�ek−n/2

�e�−k2k−1/N̄�t��. �A11�

This expression can be simplified drastically for n� N̄�t�.
Here, the sum can be accurately approximated by its first
term k=n /2, and we obtain

Pn�t� �
2n

��n
e−n�n−1�/�2N̄�t��. �A12�

This asymptote coincides, in the limit of 1�n��k0, with
the first term of the sum in the exact result �A8�.

In the cases of n� N̄�t� and n� N̄�t�, the leading contri-
bution to the sum in Eq. �A11� comes from terms for which
k−n /2�1, which makes it possible to use the Stirling
formula for the factor �k−n /2�! and arrive at

Pn�t� �
2n+1/2

nn+1/2 �
k�n/2

k0 �− 1�k−n/2k�k +
n

2
�k+n/2−1

��k −
n

2
�k−n/2+�1/2� e�−k�2k−1�/N̄�t��.

�A13�

Now let us go back to Eq. �A11�. According to our
analysis, it should be accurate for 1�n��k0. A numerical
comparison with the exact result �A8� �see Fig. 9� shows,

however, that Eq. �A11� is accurate only at N̄�n��k0. At

n� N̄ the agreement rapidly deteriorates. The disagreement
stems from the fact that the sum in Eq. �A8� consists of terms

of alternating sign. In the region of n� N̄, Pn�t� is much

FIG. 9. �Color online� The exact probabilities �A8� �the solid
line�, the approximate probabilities �A11� �the circles�, and their

asymptotics �A13� and �A12� �the squares�, for n0=104 and N̄�t
=0.01��99.5. The agreement is good for n� N̄�t�.

FIG. 10. �Color online� The lifetime probability distribution p�t�
normalized to �, as described by Eq. �A15� �the blue solid line�, and
its long time asymptote p�t� /�= �3/2�e−�t �the red dashed line�.
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smaller than each of the relevant terms of the sum, while the
magnitudes of the successive terms are close to each other.
One can say that there is strong destructive interference of
quantum states of the system. In this situation, virtually any
approximation made in calculating the individual terms
of the sum may alter the precise balance between the terms

and cause large errors in the region of n� N̄. The same prob-
lem appears in our stationary WKB theory, see Sec. III,
which makes the time-dependent WKB approximation
advantageous in this case.

Now we proceed to calculating the probability distribu-
tion of lifetimes of the particles, and the average extinction
time. The quantity P0�t� is the probability of extinction
at time t. Therefore, the lifetime probability distribution
is p�t�=dP0�t� /dt. On the other hand, P0�t�=G�x=0, t�.
Therefore, using Eq. �A1�, we obtain the exact result

p�t� = ��
k=1

k0

k�1 − 2k�Akq2k�0�e−k�2k−1��t. �A14�

Both p�t� and all its derivatives with respect to t vanish at
t=0, so p�t� is exponentially small at �t�1. When k0�1
and �t�1/�k0, Eq. �A14� can be approximated as

p�t� � ��
k=1

�

k�2k − 1��P2k−2�0� − P2k�0��e−k�2k−1��t,

�A15�

which is independent of k0. This universal distribution
is shown in Fig. 10. The long-time tail of the distribution,
�t�1, is described by the first term of the sum in Eq. �A15�,
which yields p�t���3� /2�e−�t.

The average extinction time is

�̄ = �
0

�

tp�t�dt = �
0

�

�1 − P0�t��dt = �
0

�

�1 − G�x = 0,t��dt ,

�A16�

which yields

�̄ =
1

�
�
k=1

k0 Akq2k�0�
k�2k − 1�

. �A17�

When k0�1, we obtain a k0-independent asymptotics

�̄ �
1

�
�
k=1

� P2k�0� − P2k−2�0�
k�2k − 1�

=
1.38629¯

�
, �A18�

which also follows from Eq. �A15�. Note that the first term
in the series of Eq. �A18� already gives a fair accuracy:
�̄1=1.5/�.
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